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Boundary-induced drift of spirals in excitable media
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The motion of a spiral wave in an excitable medium due to interaction with a boundary is considered. The
drift of the core and the frequency shift, evaluated analytically as a response to a small perturbation of the
boundary, are found to be superexponentially weak. It is shown that for some range of parameters the spiral is
unstable to small displacements away from the center of a circular domain.
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A great variety of experiments have revealed rotating spi-
ral wave patterns in two-dimensional excitable media. These
spirals arise as waves of oxidation in the Belousov-
Zhabotinsky (BZ) reaction [1] and in the catalysis of CO on
Pt substrates [2], as waves of electrical activity propagating
along the axonal membrane of a neural cell [3], as tempo-
rally periodic and spatially organized contractions in muscu-
lar tissue [4], etc. The theory of wave propagation in excit-
able media can be described by the pair of “reaction-
diffusion” equations [5,6]:

du=eViu+ M ,
€
1)
dv=206eViv+g(u,v) ,

where €<1 is a small positive parameter, u and v are the
“fast” and ““slow” variables, and §=D, /D, is the ratio of
the diffusion coefficients of the two variables. The properties
of a particular system are given by the functions f and g. In
the Fitzhugh-Nagumo (FN) model [7] f=3u—u’-v,
g=u—yv+A with the parameters y and A governing the
kinetics of the medium.

In the one-dimensional (1D) case Egs. (1) have a solution
in the form of moving excited and quiescent zones, separated
by interfaces of width O(€) [5,6]. In the 2D case, Egs. (1)
reduce to a locally 1D problem c,=c(v)— ek where c(v) is
the interfacial velocity in the 1D case, c,, is normal velocity
of the interface, and k is the local curvature of the interface
[5,6]. For small €, v deviates slightly from the stall value
Us, defined by c(v;)=0, and Egs. (1) can be written in a
universal form, independent of a particular model. This uni-
versality is reflected by a certain scaling of the system,

due to Fife, [8] v—v,=€'30, x=€3%, t=€"%, c(v))

~e'c,b;, w=€"13@, where cy=dc(v)/dv|,=,_ (in the

FN model v,=0 and ¢, = —1/+/2).

We consider the case of small diffusion of the slow vari-
able v, i.e., §<1 [9,10]. In this case, the problem splits into
an outer problem, where diffusion and the finite interfacial
width can be ignored, and a small core region near the origin
where this approximation breaks down. For the outer prob-
lem, in the frame corotating with the interface at the fre-
quency o, the Fife ansatz brings Eqgs. (1) and the interfacial
equation (after dropping tildes) to the form

IVT—wigvt=g= , ()
cp=cyv—k 3

where the signs “+ ” and “— " correspond to the excited and
quiescent regions, respectively. g “*=g(u*(v,),v,)=const. A
rigidly rotating spiral solution (d,=0) can be obtained both
for the case of an infinite domain and for a finite circular
domain. Spiral wave number selection is obtained by substi-
tuting the expressions for the normal velocity ¢, and the
curvature k into Eq. (3). One has the following equation
[5,9,10] for the interfacial angle 6, :

d
;}:=(p—%)(1+¢2)—3(1+¢2)3’2 , @

where p=Vor, Y(p)=pl[d6/p)/dp]. Equation (4) com-
pleted by the boundary condition is a nonlinear eigenvalue
problem for B, related to by the relation
B=(c,g g m)/[0**(g"—g~)]. The solution of the infi-
nite domain problem y(p) has the asymptotics y(p)
x— p/B at p— and ¢,(0)=0, and the corresponding ei-
genvalue B,~1.738 [5,9,10]. For the finite circular domain
case, one has a correction to By, which can be obtained by
means of matched asymptotics. Confinement of a spiral by a
boundary results in the appearance of a thin boundary layer,
where the solution is strongly perturbed, whereas in the rest
of the domain it can be treated by the linearization of Eq. (4).
The boundary layer is described by solving Eq. (4) assuming
R—p<R. The problem is solved for no-flux (¢=0) bound-
ary conditions at the radius R, i.e., that the interface ap-
proaches the boundary along its normal. Rigid rotation exists
only if the spiral tip is exactly at the center of the domain.
The matching yields the following correction dw to the fre-
quency of rotation in the infinite domain:

R® R?

=@ - 1-(BY | B
Sw B R o’exp 3B, Eg +79R| , 5)
where
=T B 1l s 1.4735
"=2B, "2 Tg 108, B14TS.
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FIG. 1. The frequency shift dw/w versus radius of the domain
R. Solid line is the numerical solution of Eq. (4), dashed line is the
analytical solution (5).

The superexponentially weak shift dw is in good agreement
with a numerical solution of Eq. (4) (see Fig. 1).

In a finite domain, rigid rotation is not generic. The inter-
action with the boundary (or other spirals) gives rise to both
localized deformations, small in comparison with the spiral
size, and “‘macroscopic” drifting of the spiral as a whole. In
the following we derive the universal, in this case superex-
ponential, asymptotics of spiral interaction with a perturbed
circular boundary, if the distance from the spiral tip to the
boundary is sufficiently large. This extremely weak interac-
tion is the direct consequence of the absence of diffusion in
the slow variable and the locality of Eq. (3) for e—0. We
prove that this small drift can be both attractive or repulsive,
depending on the domain radius. In the attractive case, this
implies an instability of the rigidly rotating spiral.

For a slightly perturbed circular boundary (or, equiva-
lently, for the case of a spiral tip displaced from the center of
a circular domain), the boundary radius is given by
R(6)=Ry+ u(6),n<<R,. The no-flux boundary conditions
here imply ¢(R)= — u'/R. We may eliminate the need for a
fully nonlinear treatment at the boundary by replacing the
boundary conditions at R(6) by an effective boundary con-
dition at R,, which we take to be large. Expanding
Y(Ro+p) around the ideal circular domain [i.e.,
Yo(Ro)=0,¥{(Ry)~R,] one obtains

’

“ ,
W(Rg)=—Rop— R ~=—Rou . (6)
0

The problem can be essentially solved within the linear
approximation starting from the spiral solution in a circular
domain. The key point of the calculation is that the perturbed
boundary produces distortions in resonance with the transla-
tion modes of the free boundary problem. In order to over-
come the secular growth of these modes in time (which is, in
fact, a drift of the spiral as a whole), one needs to introduce
a moving coordinate frame. The boundedness of the pertur-
bation in that frame selects the unique value of the drift
velocity.

In the system drifting with velocity ¢4=(c,,c,) and ro-
tating with frequency w, Eq. (2) has the form

IV —wdgwT=g"+cg- Vv . (7)
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To linear order in c¢,;, one may replace v in the right-hand
side of Eq. (7) by vy in the corotating frame v
=(—g"/w)[6—67(r)]+const with 67— =A0=2mg |
(g —g"). Without loss of generality, we may choose
g —g =1. In our frame the perturbation induced by the
steady drift is explicitly time dependent and can be written in
the form

L8 (i—y)

cd-Vvo———— 7p

explilwt+6)]+cec. . (8)

where C:(cx—icy)/ Vw. The translation modes of the inti-
nite domain problem coincide exactly with Eq. (8) and have,
respectively, eigenvalues *iw [11]. Therefore steady drift is
in resonance with the translation modes, and so can counter-
act the resonance induced by the boundary perturbations.

To find the value of C one has to determine the (linear)
response of v to the drift in Eq. (7). As the drift perturbation
is the sum of two complex-conjugate terms, the response to
linear order similarly decomposes, and in the following we
will only explicitly treat the +iw¢ component. Solving Eq.
(7) for the linear response of the v field and applying the
continuity conditions for v at the shifted interface (as in [11])
yields the result

80" =5660"exp[iM] . 9)

where 56 expliwt] are the perturbations to the interfaces.
The linearized Eq. (3) then yields a closed equation for
86"

(2 3yy’
2 + - _ -+
7250 +|‘.p+p¢ Tl
e —i56"=Cfip)
(10}
where
i~y B —
f(P)Z—i-p— l+;\/l+l[rlexp[10 ] . (1)

Equation (10) can be solved analytically exploiting our
knowledge of the homogeneous solutions. One homogeneous
solution is given by the translation eigenmode
Xx1=(i—¢/p)explif*] and the second solution can be ob-
tained via reduction of order Xzlef{;dr’[W(r’)/Xf],
where the Wronskian W(p)=exp(—[fdr'r ¥)p *(1+y7)*".
These solutions have the following asymptotic behaviors:
x1— l/p,xo—const for p—O and x, is bounded,
x>~ exp[p>/(3B)] for p>1. The general solution of Eq. (10)
can be represented in the form

560" =A,x1+Ax2+CZ(p) . (12)

where Z(p) is the inhomogeneous solution which behaves as
(iB/2)In(p)+z, as p—0, for some constant z,, and is
bounded for large p. The constants A,, are fixed by the
boundary conditions at p=R, and at the core p—0.

In order to satisfy the boundary conditions on the outer
boundary we have to extract the resonant contributions from
the perturbations given by Eq. (6). In fact, one needs only the
first harmonics w; = (u( 0+ wt)exp[ —iwt]). Then the bound-
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FIG. 2. Dependence S=|S; |(2/Vw)(—c, /7)) versus g*.

ary conditions read as " =Rd, 80* = — pR+c.c. which,
using the fact that 58" —A,x, for p>1, immediately yields
the following relation: A,x;(Rg)= =—p1

An additional relation between C, A{, and A, may be
obtained by satisfying the regularity conditions at the core,
where the outer equations (2) and (3) break down [9,11].
This is most simply done for the case €?<§3<1 (so-
called Bernoff core) where the problem still possesses sharp
interfaces even in the core region. Thus we need to perform
the “Bernoff scaling” in addition to the ‘Fife scaling”
[11,9,10): 7=r& Y3,5=v6"". In terms of the Bernoff vari-
ables, the small p outer solution has the following asymptot-
ics:

(1 .
50+=iA1e'M/2(;—iB +A,x2(0)+ C

iB
Zot jln(p))
+ 0(p) , (13)

which we must match to the large r core solution. The values
of the constants A;, are determined by this matching. If
¢4~ 8°7, the drifting core problem can be treated in linear
approx1mat10n Following along the lines of [11], and defin-
ing C=C& 23, we may obtain the linear response of the
interface to the drift. Asymptotically, this has the form

S+
50—(

+S5
Jor 02T

The asymptotic constants S fz are determined numerically
from the solution of the Eerturbed core. In addition, one can

(14)

show that 86" =—(C/C*)66 *. Together with Eq. (9),
which also holds for r—co, this implies arg(S;)
=A6/2— m/2. The dependence |S; | versus g* is given in

Fig. 2. Note that |S;| vanishes for the symmetric spiral
(g7=1/2) and diverges for g*=0,1. It follows from the
symmetry of the core solution under g*«<1—g*, that
S3(8*)==85(1—g").

Comparing Eqgs. (13) and (14) one achieves the
matching if the relations A, =—i8~/3S; Cexp(—iAg/2) and

RAPID COMMUNICATIONS

R2397

Angle
10 |

-1.0 |

-30

10
Modulus

10°

"

10°

23 33 a3 )
R

FIG. 3. The angle of thc drift and the normalized velocity

|C 872283/ u| versus R for g*=0.7. The dashed lines designate the

stability zones of the spiral, given by the condition that the angle is

between — w/2 and /2. For example, for the distance R<2.9 or
R=5.1 the central position is unstable.

A= 6"253¢/x(0) hold. The matching with the In(p)
term is achieved at higher order in 6. Therefore the drift is
given by the expression

~ x2(0) 52/3#-1 52/3.“1 R(s) 0
=— -——i—.
¢ x3(Ro)S5 x Sy xpl 3 i)

Equation (15) reveals the superexponentially weak interac-
tion with the boundary. The direction of the drift actually
also depends on the radius R, (see Fig. 3). Formally speak-
ing, the drift vanishes as 6— 0. In this case the Bernoff scal-
ing fails, and one needs to analyze the diffusionless core
[12]. An analysis similar to the above shows that in this case
the drift is proportional to €%

For the particular case of u(6) given by a spiral displaced
from the center of the circular boundary at the position
(x,y), the perturbation is given by u;=x/2+O(1/R,) where
X=x—iy. Using the relation C~ 3,X, one has the following
equation of the motion:

X . (16)

53 R(3) Iﬁ
3B B

dxc S+ exp| — -2i

From Eq. (16) one sees that, depending on the radius of the
boundary, the spiral either returns back to the center, or drifts
toward the boundary. In fact, the stability characteristic
changes periodically as a function of Ry,

The problem of the spiral motion in a circular domain can
also be treated as a linear stability problem. The drift is then
considered as a small shift of the eigenvalues corresponding
to the translation modes due to confinement of the spiral.
Then one recovers Eq. (16) as the expression for the shift of
the eigenvalues.

We have obtained a quite unexpected result—the spiral
interacts extremely weakly with the boundary. The drift turns
out to be of order exp[—R>]. In oscillatory media the inter-
action is known to decay exponentially due to the screening
effects from the emitted waves [13]. One may expect an
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FIG. 4. Dependence |c| versus &. The parameters of the simu-
lations with the model of Ref. [21] are a=0.75, b=0.01,
€=0.002, the domain size 8X8, number of the grid points
141x141.

asymptotically exponential screening of the interaction in the
case of significant diffusivity of the slow variable. Also, it
should be noted that the Bernoff limit, while well defined
mathematically, is hard to acheive experimentally, as it re-
quires that €< §'3<1, which means that both € and &
must be exceedingly small, say 5~107°, e~ 10~ 5. However,
we find from our simulations that the extremely weak inter-
action with the boundary derived herein is valid even outside
the Bernoff limit. The drift is however linear in &, as op-
posed to 87 in this case (see Fig. 4). For the diffusionless
core, we expect the drift to be proportional to € in typical
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situations. This is consistent with the analysis of Keener [14]
outlining the violation of Fife scaling for the not-too-small
values of €~1072 encountered in nature.

Another noteworthy result of our calculation is that the
confinement of the spiral into a finite region always increases
the frequency. One expects, therefore, that in the multispiral
case, spirals will coexist, and the symmetry breaking analo-
gous to that in Ref. [15] will not develop. This statement is in
qualitative agreement with numerical simulations [10,16], al-
though one cannot exclude a symmetry breaking for not very
small €, 4.

One remaining problem is the interaction with the plane
boundary. Formally speaking, the presented method fails to
describe such an interaction, because ux is not small any
more. Moreover, one has the effect of the tearing off of the
interfaces at the boundary. However, our analysis shows that
the influence of remote parts of the interfaces is negligibly
weak, and the main contribution comes from the parts closest
to the boundary, where the variations of u are relatively
small. In this way we obtain an ~exp[ —X*/3B —2iX/B] in-
teraction with the plane boundary at the distance X. This type
of interaction exhibits bound states at the distances
X~ wBn, which have indeed been seen in numerical simu-
lations [17]. Similarly, the extremely local nature of the in-
teraction with the boundary accounts qualitatively for the
results of the numerical simulations [18] of the interaction of
the spiral (in a medium with no slow field diffusion) with a
defect, where it was found that the interaction was only ef-
fective up to a distance of order of the core radius.

In recent papers the interaction of the spiral with the
boundary has been considered within the framework of a
phenomenological kinematic approach. Although qualita-
tively the results look reasonable, the answers exaggerate the
effects of the interaction (1/R in [19] and exponential in

[20]).
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